

Nigel Dorian

We have all taken pictures like this:

• Or like this:

• Or even like this!

- The Solution
 - Take multiple images of the same scene
 - If possible use a tripod
 - Fix the exposure and focus best to use Aperture Priority
 - Helps to use an intervalometer if you have one
 - Number of images and interval depends on nature of the crowds
 - The more people/vehicles the more images needed
 - The slower they are moving the longer the interval
 - I have found 10-20 images at 5-10 sec intervals to work well

- Merge all the images using Adobe Photoshop
 - Create a new file containing all the images of the scene as layers known as a "Stack"
 - Merge these layers into a "Smart Object"
 - Select a Stack Mode option that only retains "Constant" pixels.

- Start in Lightroom
 - Import all the images in the usual way (helps to put them in a separate "collection")
 - Make any development adjustments that you want to the first image
 - Select all the images and then go to Photo > Develop Settings > Sync Settings > Synchronize...
- Go to Photoshop
 - Select all then Photo > Edit in > Open as layers in Photoshop...

- Start in Photoshop
 - Select File > Scripts > Load Files into Stack
 - In pop-up window
 - Browse to select all the image files
 - (Optionally) Select "Attempt to Automatically Align Source Images
 - Select "Create Smart Object After Loading Layers"

- Continue in Photoshop
- If using Method 1 (starting in Lightroom) then
 - Select > All Layers
 - Optional) Edit > Auto Align Layers
 - Layer > Smart Objects > Convert to Smart Object
- Select Smart Object Layer then
 - Layer > Smart Object > Stack Mode > Median

Method 1

- Windsor 3
- On a tripod but slightly skewed
- Images need adjusting and cropping

Stack Mode	Result	Comments
Entropy	entropy = - sum((probability of value) * log2(probability of value))	The binary entropy (or zero order entropy) defines a lower bound on how many bits would be necessary to losslessly encode the information in a set.
Kurtosis	kurtosis = (sum((value - mean) ⁴) over non- transparent pixels) / ((number of non-transparent pixels - 1) * (standard deviation) ⁴).	A measure of peakedness or flatness compared to a normal distribution.
Maximum	The maximum channel values for all non-transparent pixels	
Mean	The mean channel values for all non-transparent pixels	Effective for noise reduction
Median	The median channel values for all non-transparent pixels	Effective for noise reduction and removal of unwanted content from the image
Minimum	The minimum channel values for all non-transparent pixels	
Range	Maximum minus the minimum of the non- transparent pixel values	
Skewness	skewness = $(sum((value - mean)^3) over non-transparent pixels) / ((number of non-transparentpixels - 1) * (standard deviation)3)$	Skewness is a measure of symmetry or asymmetry around the statistical mean
Standard Deviation	standard deviation = Square Root(variance)	
Summation	The sum channel values for all non-transparent pixels	
Variance	variance = (sum((value-mean) ²) over non- transparent pixels) / (number of non-transparent pixels - 1)	

Luminance	Stack Mode	
50		
45		
50		
1.		
50		
75		
50		
50		
45		
1		
50		
50		
50		
45		
2		
50		
50		
45		
1.		

Method 2

- Paddington Station 2
- Not able to use a tripod
- Images not aligned

Westminster Cathedral Wellington Arch British Museum Paddington Station Windsor Castle

Nigel Dorian

