

Nik HDR Efex Pro

Nigel Dorian

- What is dynamic range?
- The difference between the brightest and darkest points in an image.
- Usually measured as a straight ratio (Contrast Ratio) or in Stops (Exposure Value) where 1 stop = 2 * contrast ratio

 The dynamic range of typical everyday scenes often exceeds the dynamic range capabilities of the image recording system

Component	Dynamic Range	Stops
Typical scene (Interior with window)	100,000:1	16.5
Human eye	1,000,000:1 (or more)	22.6
Best DSLR Sensor (Nikon D810)	28,500:1	14.8

Why does Dynamic Range Matter

Output devices have even lower dynamic ranges

Component	Dynamic Range	Stops
Best LED screens	2000:1	11
Printer	200:1	8

- 1. Make multiple exposures of the same scene using different exposure levels
 - Use a tripod if possible
 - Three exposures (-2, o, +2 EV) usually produces good results
 - Keep ISO and aperture constant and vary shutter speed
 - Use Auto-Exposure Bracketing if your camera supports this

- Remaining steps are done using post-processing software, in camera or out
- 2. Auto Image Alignment
 - Not necessary if all images were shot on a tripod
 - Relies on well defined vertical/horizontal edges in the image
- 3. De-ghosting
 - Required where something has moved during the time that the multiple exposures were taken
 - Uses one of the exposures as a static reference source for the moving elements

- 4. Exposure Blending
 - Merges the source images pixel by pixel to select the best detail at each location.
 - The resulting image has a dynamic range equivalent to the combined dynamic ranges of all the source images eg 14 +4 = 18 stops.

- 5. Tone Mapping
 - Compresses the dynamic range down to a level that can be handled by an output device while still preserving the full range of detail from the HDR image.
 - Most HDR software applies two levels of tone mapping:
 - Global tone mapping reduces all pixels according to their intensity. Tends to result in very "flat" looking images
 - Local tone mapping will convert pixels of the same intensity to different values depending on their relationship to surrounding pixels. This adds "pep" to the image.
 - Most HDR software provides the user with control over the local tone mapping logic. Sometimes grossly misused!

Gustave Le Gray – Brig on the Water 1854

